Selasa, 13 Desember 2011

KISAH DI BALIK SUATU KOMUNIKASI SINGKAT

Setiap orang dapat mengingat saat-saat matanya bertemu pandang dengan kenalannya dan mereka saling menyapa. Percayakah Anda bahwa komunikasi singkat tersebut ternyata memiliki kisah yang panjang?
Anggaplah pada suatu sore dua pria berada di tempat terpisah satu sama lain. Meskipun mereka adalah teman dekat, menolehkan kepalanya ke arah temannya, yang belum lagi ia kenali, memulai rantai tanggapan biokimiawi: cahaya yang terpantul dari tubuh temannya memasuki lensa matanya pada kecepatan 10 triliun foton (partikel cahaya) per detik. Cahaya menembus lensa dan cairan yang mengisi bola mata sebelum akhirnya jatuh di retina. Pada retina terdapat ratusan juta sel yang disebut "sel kerucut" dan "sel batang." Sel batang memilahkan cahaya dari gelap dan sel kerucut mengindera warna.
KORNEA DAN IRIS
Kornea, satu dari 40 bagian dasar mata, adalah suatu lapisan bening yang bertempat di bagian paling depan dari mata. Kornea membiarkan cahaya melaluinya sesempurna kaca jendela. Tentunya tidaklah suatu kebetulan jika jaringan ini, yang tak ditemukan di tempat lain pada tubuh, terletak di tempat yang tepat, yakni, di permukaan bagian depan mata. Bagian penting lain pada mata adalah iris, yang memberi warna pada mata. Terletak tepat di belakang kornea, iris mengatur banyaknya cahaya yang dibiarkan memasuki mata dengan menyempitkan atau melebarkan pupil, lubang bulat di tengahnya. Dalam cahaya terang, iris segera menyempit. Dalam cahaya temaram, iris melebar untuk membiarkan lebih banyak cahaya memasuki mata. Sistem serupa ini telah diterapkan sebagai dasar rancangan kamera untuk mengatur jumlah cahaya yang masuk, tetapi sama sekali belum mendekati kesempurnaan mata.

Mata manusia dapat digunakan dengan kerja selaras sekitar empat puluh bagian yang berbeda. Tidak adanya satu saja dari bagian ini akan menjadikan mata tak berguna. Sebagai contoh, tanpa kelenjar air mata saja, mata akhirnya akan mengering dan berhenti bekerja. Sistem ini, yang tak bisa disederhanakan, tak akan mungkin diterangkan melalui ‘perkembangan bertahap’ sebagaimana dinyatakan para evolusionis. Ini menunjukkan bahwa mata muncul dengan bentuk lengkap dan sempurna, yang berarti bahwa mata itu diciptakan.


Tergantung pada benda luarnya, berbagai gelombang cahaya jatuh pada tempat-tempat berbeda pada retina. Mari kita renungkan tentang saat orang yang kita ceritakan tadi melihat temannya. Mari sejenak kita pikirkan mengenai orang yang kita anggap sedang melihat kawannya. Beberapa ciri wajah temannya menghasilkan kepadatan cahaya yang berbeda pada retinanya, misalnya ciri wajah yang lebih gelap seperti alis mata akan memantulkan cahaya dengan kepadatan yang jauh lebih rendah. Sel-sel retina berdekatan sebaliknya menerima kepadatan yang lebih kuat dari cahaya yang terpantul dari bagian muka kepala temannya. Seluruh ciri muka temannya menghasilkan gelombang dengan kepadatan berbeda-beda pada retinanya.
Jenis dorongan apakah yang ditimbulkan oleh gelombang cahaya ini?
Jawaban pertanyaan ini tentu sangatlah rumit. Meskipun demikian, jawabannya haruslah diteliti untuk lebih mengenal seutuhnya rancangan yang luar biasa pada mata.

SONAR DI DALAM TENGKORAK LUMBA-LUMBA


Seekor lumba-lumba dapat membedakan dua uang logam berbeda di dalam air yang gelap pekat hingga sejauh 2 mil (3 km). Apakah lumba-lumba dapat melihat hingga sejauh itu? Tidak, ia melakukannya tanpa melihat. Ia dapat menentukannya secara tepat dengan menggunakan rancangan sempurna sistem penentuan tempat dengan gema yang ada di dalam tengkoraknya. Ia mengumpulkan informasi yang sangat terperinci mengenai bentuk, ukuran, kecepatan, dan bentuk benda yang berdekatan.
Perlu waktu bagi lumba-lumba untuk menguasai keahlian yang diperlukan untuk menggunakan sistem yang rumit ini. Jika lumba-lumba dewasa yang terlatih dapat menentukan suatu benda melalui beberapa sinyal, lumba-lumba muda harus berlatih selama bertahun-tahun.
Lumba-lumba tidak menggunakan kemampuan ini hanya untuk menentukan keadaan sekelilingnya. Kadangkala mereka berkelompok pada waktu makan dan mengeluarkan suara bernada tinggi yang begitu kuat sehingga mampu membingungkan buruan mereka, yang kemudian siap ditangkap. Lumba-lumba dewasa menghasilkan suara yang tak dapat didengar manusia (20.000 Hz atau lebih tinggi). Pemusatan gelombang suara dilakukan di beberapa tempat di kepala lumba-lumba. Bagian yang disebut melon, yang merupakan struktur berlemak pada kepala depannya, bertindak sebagai lensa suara dan memusatkan suara-suara ketukan yang dipancarkan oleh lumba-lumba ke dalam suatu gelombang yang lebih sempit. Lumba-lumba dapat mengarahkan gelombang ini menurut keinginan dengan menggerakkan kepalanya.
Suara-suara ketukan ini segera menggema kembali ketika mereka menubruk rintangan apa pun. Rahang yang lebih rendah bertindak sebagai sebuah penerima, yang memancarkan sinyal-sinyal kembali ke telinganya. Di masing-masing sisi rahang bawah ini ada daerah bertulang tipis, yang berhubungan dengan suatu bahan lemak. Suara dihubungkan melalui bahan lemak ini pada gelembung pendengaran, sebuah gelembung besar. Kemudian telinga meneruskan data ke otak, yang menelaah dan menerjemahkan artinya. Bahan lemak yang serupa juga berada dalam sonar ikan paus. Lemak (senyawa lemak) yang berbeda mengikat gelombang suara ultrasonik (gelombang suara di atas jangkauan pendengaran kita) yang bergerak melaluinya dengan cara berbeda. Lemak berbeda harus diatur dalam bentuk dan urutan yang tepat untuk memusatkan gelombang suara yang kembali. Masing-masing lemak terpisah itu bersifat khas dan berbeda dengan lemak gemuk pada umumnya dan terbuat dari proses kimiawi yang rumit yang memerlukan sejumlah enzim berbeda. Sistem sonar dalam lumba-lumba tidak mungkin berkembang bertahap, sebagaimana dinyatakan oleh teori evolusi. Hal ini karena hanya setelah lemak telah berevolusi hingga keadaan dan bentuk akhirlah makhluk ini bisa menggunakan sistem yang penting ini. Di samping itu, sistem-sistem pendukung seperti rahang bawah, sistem telinga dalam dan pusat penelaahan dalam otaknya semuanya harus berkembang utuh. Penentuan letak dengan gema ini merupakan sistem "rumit tak tersederhanakan" yang sangat mustahil untuk berevolusi dalam tahap demi tahap. Oleh sebab itu, nyatalah bahwa sistem ini adalah penciptaan Allah lainnya yang sempurna.
Lumba-lumba dewasa memancarkan suara yang tak bisa didengar manusia (20.000 Hz atau lebih). Gelombang suara ini dikeluarkan dari benjolan yang disebut "melon", pada bagian depan kepalanya. Lumba-lumba dapat mengarahkan gelombang ini menurut keinginan dengan menggerakkan kepalanya. Gelombang sonar ini akan segera terpantul ketika menubruk penghalang apa pun. Rahang bawah berguna sebagai penerima, yang mengirim kembali sinyal ke telinga. Telinga meneruskan data ini ke otak, yang menelaah dan menerjemahkan artinya.

Senin, 12 Desember 2011

KLOROPLAS


Fotosintesis berperan menyediakan makanan bagi hampir seluruh kehidupan baik secara langsung maupun tak langsung. Fotosintesis berlangsung pada semua bagian daun yang berwarna hijau termasuk batang dan buah yang masih muda dan berwarna hijau. Bagian daun yang berwarna hijau tersebut memiliki kloroplas yang menjadi tempat berlangsungnya fotosintesis.  Terdapat kurang lebih setengah juta kloroplas pada setiap 1 mm2 permukaan daun. Warna hijau pada daun disebabkan oleh klorofil yang terdapat di dalam kloroplas. Pigmen ini mampu mengubah energi cahaya dari sinar matahari menjadi energi kimia.
Fotosintesis pada sel eukariot berlangsung di dalam kloroplas, yang utamanya terdapat pada jaringan mesofil daun. Kloroplas umumnya tersusun dekat vakuola sentral dengan lebar 2-4 µm dan panjang 5-10 µm. Jumlah berkisar 20-40 buah  per sel. Kloroplas pertama kali diidentifikasi tahun 1881 oleh ahli biologi Jerman bernama Engelmann. Engelmann memperlihatkan bahwa ketika sel alga hijau, spirogyra diiliminasi maka akan tampak banyak bakteri berkumpul dengan sel. Bakteri ini menggunakan sejumlah besar oksigen yang dilepaskan oleh kloroplas melalui proses fotosintesis.



   Bagian luar kloroplas ditutup oleh selaput yang disusun oleh dua membran yang terpisah. Seperti membran luar pada mitokondria, membran luar kloroplas juga mengandung porin yang menyebabkan membran ini permeable terhadap molekul dengan ukuran 10.000 dalton. Sebaliknya membran dalam relatif lebih impermeabel. Banyak mesin fotosintesis terdapat pada membran dalam termasuk pigmen penyerap cahaya, kompleks rantai elektron dan apparatus pensintesis ATP. Membran bagian dalam kloroplas mengandung mesin transduksi energi yang tersusun dalam suatu kantong pipih yang disebut dengan membran tilakoid. Tilakoid disusun oleh grana. Ruang sebelah dalam tilakoid disebut dengan lumen sedangkan ruang sebelah luar dari tilakoid pada bagian sebelah dalam membran luar disebut dengan stroma. Seperti pada matriks mitokondria, stroma kloroplas mengandung molekul DNA sirkuler dan ribosom. Diperkirakan pula terdapat sekitar 60 macam polipeptida pada membran tilakoid. Setengah diantaranya dikode oleh DNA kloroplas.

Kloroplas dan fotosintesis
                Pemahaman pertama menyangkut fotosintesis ditunjukkan oleh C.B. van Niel pada tahun 1930 dengan memberikan reaksi fotosintesis sebagai berikut:
CO2 + H2O à (CH2O) + O2.
Energi dari matahari digunakan untuk memecah  CO2, melepaskan O2 dan mentransfer atom karbon ke molekul air untuk membentuk karbohidrat (CH2O). Dari melihat reaksi di atas tampak bahwa reaksi fotosintesis merupakan kebalikan dari reaski respirasi sel.  Akan tetapi tumbuhan tidak menghasilkan makanan dengan hanya membalik reaksi.
                Pada respirasi reaksinya merupakan reaksi redoks. Energi dilepas dari gula pada saat elektron yang berikatan dengan hidrogen diangkut ke oksigen yang membentuk air sebagai hasil samping. Elektron akan kehilangan energi potensialnya karena oksigen elektronegatif yang akan menarik elektron melalui rantai transport elektron. Mitokondria menggunakan energi ini untuk menghasilkan ATP. Seperti respirasi sel, fotosintesis juga merupakan reaksi redoks yang membalik arah aliran elektron. Air terurai dan elektron ditransfer bersama dengan ion hidrogen dari air ke karbondioksida dan mereduksinya menjadi gula. Elektron bertambah energi potensialnya ketika electron ini dipindahkan dari air ke gula.
                Persamaan reaksi fotosintesis tampak seperti suatu reaksi yang sangat sederhana dari suatu proses yang sangat rumit. Akan tetapi sebenarnya fotosintesis bukanlah merupakan suatu poses tunggal. Fotosintesis terdiri dari dua proses yang masing-masing terdiri dari banyak tahapan reaksi. Kedua tahap reaksi tersebut terdiri dari reaksi terang (fotolisis) dan reaksi gelap (siklus Calvin).

REAKSI TERANG
                Reaksi terang merupakan tahapan fotosintesis dimana energi matahari diubah menjadi energi kimia. Cahaya yang diserap oleh klorofil menggerakkan transfer elektron dan hidrogen dari air ke akseptor elektron yang disebut dengan NADP+ (nikotiamin adenine dinukleotida fosfoat) yang menyimpan elektron berenergi tinggi ini untuk sementara. Dalam proses ini air terurai dan melepaskan O2.
Klorofil      merupakan pigmen adalah merupakan suatu molekul yang mengandung kromofor yang merupakan suatu kelompok senyawa kimia yang mampu menyerap cahaya dengan panjang gelombang tertentu. Daun tumbuhan berwarna hijau karena mengandung sejumlah besar pigmen klorofil. Pigmen ini menyerap cahaya warna merah dan biru. Molekul klorofil terdiri dari dua bagian utama yaitu cincin porfirin yang berperan dalam penyerapan cahaya dan rantai fitol yang menjaga agar klorofil tetap tetrbenam dalam membran fotosintesis. Porfirin tidak sama dengan pigmen merah, heme yang merupakan penyusun hemoglobin, porfirin mengandung atom magnesium.
                Klorofil tersusun bersama protein dan molekul organik  yang lebih kecil membentuk fotosistem. Fotosistem memiliki “kompleks antena” pengumpul cahaya yang tersusun atas klorofil a dan b serta karotenoid. Hla yang khusus pada klorofil a adalah kedudukannya sebagai pusat reaksi di mana terjadi reaksi kimiawi pertama fotosintesis yang digerakkan oleh cahaya. Molekul yang secara bersama-sama menggunakan pusat reaksi dengan klorofil a adalah molekul khusus yang sisebut dengan ekseptor elektron primer.
                Membran tilakoid dipenuhi oleh dua jenis fotositem yang secara bersama-sama bekerja dalam reaksi terang. Kedua fotosistem itu adalah fotosistem I dan II. Klorofil pada pusat reaksi fotosistem I dikenal P700 karena pigmen ini paling baik menyerap cahaya dengan panjang gelombang 700 nm (bagian spectrum yang sangat merah). Klorofil pada pusat reaksi fotosistem II dikenal P680 karena spectrum penyerapannya memiliki puncak pada panjang cahaya 680nm (spetrum merah).
                Reaksi terang dapat dibedakan menjadi dua tahap yaitu fosforilasi siklik dan fosforilasi nonsiklik. Fosforilasi siklik hanya melibatkan fotosistem I. Fosforilasi siklik dimulai ketika klorofil diaktifkan oleh foton (Pigmen ini menyerap cahaya dengan panjang gelombang 700 nm). Bila setiap foton diabsorbsi sebuah elektron dari klorofil a menjadi aktif sehingga dapat melompat dari klorofil a ke sebuah molekul penerima. Dalam hal ini molekul penerima memindahkannya pada suatu sistem transport elektron.
                Bila sebuah elektron melewati sistem transport ini dari suatu molekul ke molekul berikutnya elektro secara bertahap kehilangan energinya. Energi ini akan digunakan untuk memompa ion hodrogen melintasi mebran masuk ke dalam lumen mebangun suatu chemiosmotic differential (perbedaan kemiosmotik). Energi bebas dari perbedaan ini akan digunakan untuk menambahkan fosfat inorganic pada ADP untuk membentuk ATP. Ketika elektro tiba pada akseptor terakhir, maka elektron akan kembalin ke molekul klorofil a. Oleh karena itu disebut dengan fosforilasi siklik. Fosforilasi siklik itu sendiri tidak dapat menunjukkan produksi glukosa bilatidak ada reaksi NADP+ menjadi NADPH.
                Fosforilasi nonsiklik dimulai ketika fotosistem II kenyerap cahaya, suatu elektron akan dieksitasi ke tingkat energi yang ebih tinggi dalam klorofil di pusat reaksi (P680) dan ditangkao oleh akseptor eklektron primer. Selanjutnya suatu enzim yang mengektrasi elektron dari air  engirimnya ke p680 mengganti setiap elektron yang keluar dari kolorofil ketika menyerap enerhi cahaya. Reaksi ini mengurai air menjadi dua ion hidrogen dan satu oksigen yang segera bergabung dengan ion oksigen lain membentuk o2. Setiap elektron yang terfoto eksitasi mengalir dati akseptor elektron primer fotosistem II ke fotosistemI melalui rantai transport elektron. Begitu elektron menuruni rantai tersebut, eksergoniknya jauth ke tingkat energi yang kebih rendah. Energi bebas yang ada selnajutnya oleh membran tilaoid digunakan untuk membentuk ATP.
Siklus Calvin (Reaksi gelap)
                Siklus Calvin terjadi dalam stroma, di mana terdapat sejumlah molekul yang mengandung karbon. Salah satunya dalah senyawa dengan 5 atom C yaitu ribulosa bifosfat (RuBP). Siklus ini di mulai ketika sebuah molekul RuBP secara enzimatik berikatan dengan molekul CO2 dari udara menghasilkan molekul antara  6 C yang sangat tidak stabil. Molekul ini segera terpecah menjadi du molekul 3 fosfogliserat (PG). karena itu setiam molekul CO2 yang bergabung dengan RuBP membentuk 12 PG. Pada saat inilah, ATP dan NADPH yang terbentuk pada reaksi cahaya mulai digunakan. Dua belas PG dari masing-masing molekul diperlukan untuk mereduksi PG menjadi fosfogliseraldehid (PGAL)
RANGKUMAN
                Fotosintesis adalah suatu proses yang dilakukan noleh beberapa organisme yang bersifat autortrof dengan menggunakan cahaya matahari membuat bahan makanan dari molekul sederhana (CO2 dan H2O ) menjadi molekul yang lebih kompleks. Energi cahaya diserap oleh klorofil yang terdapat dalam kloroplas.
                Di dalam kloroplas terdapat setumpuk cakram yang terbungkus membran tilakoid. Membran tilakoid mengandung antenna penangkap cahaya (fotosistem I dan II, sekelompok pigmen (klorofil a dan b serta karoten) dan sistem transport elektron).
                Fotosintesis terdiri dari dua reaksi yaitu reaksi terang dan gelap. Reaksi terang menghasilkan ATP, NADPH dan O2 serta melepaskan molekul CO2 sedangkan reaksi gelap atau siklis Calvin menghasilkan PGAL yang akan dirubah menjadi glukosa.